If it's not what You are looking for type in the equation solver your own equation and let us solve it.
w^2+35w-150=0
a = 1; b = 35; c = -150;
Δ = b2-4ac
Δ = 352-4·1·(-150)
Δ = 1825
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$w_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$w_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{1825}=\sqrt{25*73}=\sqrt{25}*\sqrt{73}=5\sqrt{73}$$w_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(35)-5\sqrt{73}}{2*1}=\frac{-35-5\sqrt{73}}{2} $$w_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(35)+5\sqrt{73}}{2*1}=\frac{-35+5\sqrt{73}}{2} $
| 9(u-2)+2u=4 | | 10x+8=3x | | 90+3x+21=180 | | 3n+13=9n-17 | | 9x=184=7x=156 | | 65=m7 | | 3r-r=16 | | 20=(40-2.5r)/0.5 | | 3(2x+7)=-15+18 | | 10y-7=6y-5 | | 9z-16z+-8z=-20 | | m=76 | | 6t-4t=14 | | 17=c=3 | | 20g-11g=9 | | 10k^2-97=3k+659 | | 2(y-2)+3(y-2)=0 | | n9=7 | | 0.5(2a-10)=8 | | 0.7=0.3+x-0.15 | | 767=m | | -6=2/n-10 | | a-24=30 | | -4/9x=26.27 | | 3(x+3)=4x-6 | | m=767 | | (5x+18)+(7x-6)=180 | | 4x-18=48 | | 7x-92-6x+12=180 | | 20=g4− -16 | | -5=¼(4+20r)–8r | | 2/x+4+5/x-5=45/(x+4)(x-5) |